Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
J Clin Tuberc Other Mycobact Dis ; 27: 100299, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35146133

RESUMO

SUMMARY BACKGROUND: Multidrug-resistant (MDR) tuberculosis (TB) poses an important challenge in TB management and control. Rifampicin resistance (RR) is a solid surrogate marker of MDR-TB. We investigated the RR-TB clustering rates, bacterial population dynamics to infer transmission dynamics, and the impact of changes to patient management on these dynamics over 27 years in Rwanda. METHODS: We analysed whole genome sequences of a longitudinal collection of nationwide RR-TB isolates. The collection covered three important periods: before programmatic management of MDR-TB (PMDT; 1991-2005), the early PMDT phase (2006-2013), in which rifampicin drug-susceptibility testing (DST) was offered to retreatment patients only, and the consolidated phase (2014-2018), in which all bacteriologically confirmed TB patients had rifampicin DST done mostly via Xpert MTB/RIF assay. We constructed clusters based on a 5 SNP cut-off and resistance conferring SNPs. We used Bayesian modelling for dating and population size estimations, TransPhylo to estimate the number of secondary cases infected by each patient, and multivariable logistic regression to assess predictors of being infected by the dominant clone. RESULTS: Of 308 baseline RR-TB isolates considered for transmission analysis, the clustering analysis grouped 259 (84.1%) isolates into 13 clusters. Within these clusters, a single dominant clone was discovered containing 213 isolates (82.2% of clustered and 69.1% of all RR-TB), which we named the "Rwanda Rifampicin-Resistant clone" (R3clone). R3clone isolates belonged to Ugandan sub-lineage 4.6.1.2 and its rifampicin and isoniazid resistance were conferred by the Ser450Leu mutation in rpoB and Ser315Thr in katG genes, respectively. All R3clone isolates had Pro481Thr, a putative compensatory mutation in the rpoC gene that likely restored its fitness. The R3clone was estimated to first arise in 1987 and its population size increased exponentially through the 1990s', reaching maximum size (∼84%) in early 2000 s', with a declining trend since 2014. Indeed, the highest proportion of R3clone (129/157; 82·2%, 95%CI: 75·3-87·8%) occurred between 2000 and 13, declining to 64·4% (95%CI: 55·1-73·0%) from 2014 onward. We showed that patients with R3clone detected after an unsuccessful category 2 treatment were more likely to generate secondary cases than patients with R3clone detected after an unsuccessful category 1 treatment regimen. CONCLUSIONS: RR-TB in Rwanda is largely transmitted. Xpert MTB/RIF assay as first diagnostic test avoids unnecessary rounds of rifampicin-based TB treatment, thus preventing ongoing transmission of the dominant R3clone. As PMDT was intensified and all TB patients accessed rifampicin-resistance testing, the nationwide R3clone burden declined. To our knowledge, our findings provide the first evidence supporting the impact of universal DST on the transmission of RR-TB.

2.
mSphere ; 4(1)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728280

RESUMO

Buruli ulcer is a neglected tropical disease of skin and subcutaneous tissue caused by infection with the pathogen Mycobacterium ulcerans Many critical issues for disease control, such as understanding the mode of transmission and identifying source reservoirs of M. ulcerans, are still largely unknown. Here, we used genomics to reconstruct in detail the evolutionary trajectory and dynamics of M. ulcerans populations at a central African scale and at smaller geographical village scales. Whole-genome sequencing (WGS) data were analyzed from 179 M. ulcerans strains isolated from all Buruli ulcer foci in the Democratic Republic of the Congo, The Republic of Congo, and Angola that have ever yielded positive M. ulcerans cultures. We used both temporal associations and the study of the mycobacterial demographic history to estimate the contribution of humans as a reservoir in Buruli ulcer transmission. Our phylogeographic analysis revealed one almost exclusively predominant sublineage of M. ulcerans that arose in Central Africa and proliferated in its different regions of endemicity during the Age of Discovery. We observed how the best sampled endemic hot spot, the Songololo territory, became an area of endemicity while the region was being colonized by Belgium (1880s). We furthermore identified temporal parallels between the observed past population fluxes of M. ulcerans from the Songololo territory and the timing of health policy changes toward control of the Buruli ulcer epidemic in that region. These findings suggest that an intervention based on detecting and treating human cases in an area of endemicity might be sufficient to break disease transmission chains, irrespective of other reservoirs of the bacterium.IMPORTANCE Buruli ulcer is a destructive skin and soft tissue infection caused by Mycobacterium ulcerans The disease is characterized by progressive skin ulceration, which can lead to permanent disfigurement and long-term disability. Currently, the major hurdles facing disease control are incomplete understandings of both the mode of transmission and environmental reservoirs of M. ulcerans As decades of spasmodic environmental sampling surveys have not brought us much closer to overcoming these hurdles, the Buruli ulcer research community has recently switched to using comparative genomics. The significance of our research is in how we used both temporal associations and the study of the mycobacterial demographic history to estimate the contribution of humans as a reservoir in Buruli ulcer transmission. Our approach shows that it might be possible to use bacterial population genomics to assess the impact of health interventions, providing valuable feedback for managers of disease control programs in areas where health surveillance infrastructure is poor.


Assuntos
Úlcera de Buruli/transmissão , Evolução Molecular , Metagenômica , Mycobacterium ulcerans/genética , Angola/epidemiologia , Úlcera de Buruli/epidemiologia , Congo/epidemiologia , DNA Bacteriano/genética , República Democrática do Congo/epidemiologia , Reservatórios de Doenças/microbiologia , Humanos , Filogeografia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
3.
PLoS Negl Trop Dis ; 12(8): e0006713, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080870

RESUMO

BACKGROUND: Buruli ulcer (BU) is a chronic necrotizing infectious skin disease caused by Mycobacterium ulcerans. The treatment with BU-specific antibiotics is initiated after clinical suspicion based on the WHO clinical and epidemiological criteria. This study aimed to estimate the predictive values of these criteria and how they could be improved. METHODOLOGY/PRINCIPAL FINDINGS: A total of 224 consecutive patients presenting with skin and soft tissue lesions that could be compatible with BU, including those recognized as unlikely BU by experienced clinicians, were recruited in two BU treatment centers in southern Benin between March 2012 and March 2015. For each participant, the WHO and four additional epidemiological and clinical diagnostic criteria were recorded. For microbiological confirmation, direct smear examination and IS2404 PCR were performed. We fitted a logistic regression model with PCR positivity for BU confirmation as outcome variable. On univariate analysis, most of the clinical and epidemiological WHO criteria were associated with a positive PCR result. However, lesions on the lower limbs and WHO category 3 lesions were rather associated with a negative PCR result (respectively OR: 0.4, 95%CI: 0.3-0.8; OR: 0.5, 95%IC: 0.3-0.9). Among the additional characteristics studied, the characteristic smell of BU was strongest associated with a positive PCR result (OR = 16.4; 95%CI = 7.5-35.6). CONCLUSION/SIGNIFICANCE: The WHO diagnostic criteria could be improved upon by differentiating between lesions on the upper and lower limbs and by including lesion size and the characteristic smell recognized by experienced clinicians.


Assuntos
Úlcera de Buruli/microbiologia , Mycobacterium ulcerans , Adolescente , Adulto , Criança , Feminino , Humanos , Modelos Logísticos , Masculino , Razão de Chances , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Fatores de Risco , Pele/microbiologia , Pele/patologia , Organização Mundial da Saúde , Adulto Jovem
4.
Case Rep Pathol ; 2018: 1351694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545962

RESUMO

BACKGROUND: Basidiobolomycosis is a rare subcutaneous mycosis, which can be mistaken for several other diseases, such as soft tissue tumors, lymphoma, or Buruli ulcer in the preulcerative stage. Microbiological confirmation by PCR for Basidiobolus ranarum and culture yield the most specific diagnosis, yet they are not widely available in endemic areas and with varying sensitivity. A combination of histopathological findings, namely, granulomatous inflammation with giant cells, septate hyphal fragments, and the Splendore-Hoeppli phenomenon, can confirm basidiobolomycosis in patients presenting with painless, hard induration of soft tissue. CASE PRESENTATIONS: We report on three patients misdiagnosed as suffering from Buruli ulcer, who did not respond to Buruli treatment. Histopathological review of the tissue sections from these patients suggests basidiobolomycosis. All patients had been lost to follow-up, and none received antifungal therapy. On visiting the patients at their homes, two were reported to have died of unknown causes. The third patient was found alive and well and had experienced local spontaneous healing. CONCLUSION: Basidiobolomycosis is a rare subcutaneous fungal disease mimicking preulcerative Buruli ulcer. We stress the importance of the early recognition by clinicians and pathologists of this treatable disease, so patients can timely receive antifungal therapy.

5.
Clin Infect Dis ; 67(6): 827-834, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29538642

RESUMO

Background: The diagnosis of the neglected tropical skin and soft tissue disease Buruli ulcer (BU) is made on clinical and epidemiological grounds, after which treatment with BU-specific antibiotics is initiated empirically. Given the current decline in BU incidence, clinical expertise in the recognition of BU is likely to wane and laboratory confirmation of BU becomes increasingly important. We therefore aimed to determine the diagnostic accuracy of clinical signs and microbiological tests in patients presenting with lesions clinically compatible with BU. Methods: A total of 227 consecutive patients were recruited in southern Benin and evaluated by clinical diagnosis, direct smear examination (DSE), polymerase chain reaction (PCR), culture, and histopathology. In the absence of a gold standard, the final diagnosis in each patient was made using an expert panel approach. We estimated the accuracy of each test in comparison to the final diagnosis and evaluated the performance of 3 diagnostic algorithms. Results: Among the 205 patients with complete data, the attending clinicians recognized BU with a sensitivity of 92% (95% confidence interval [CI], 85%-96%), which was higher than the sensitivity of any of the laboratory tests. However, 14% (95% CI, 7%-24%) of patients not suspected to have BU at diagnosis were classified as BU by the expert panel. The specificities of all diagnostics were high (≥91%). All diagnostic algorithms had similar performances. Conclusions: A broader clinical suspicion should be recommended to reduce missed BU diagnoses. Taking into consideration diagnostic accuracy, time to results, cost-effectiveness, and clinical generalizability, a stepwise diagnostic approach reserving PCR to DSE-negative patients performed best.


Assuntos
Úlcera de Buruli/diagnóstico , Doenças Negligenciadas/diagnóstico , Pele/patologia , Adolescente , Adulto , Algoritmos , Benin/epidemiologia , Biópsia , Úlcera de Buruli/epidemiologia , Criança , Doenças Endêmicas , Feminino , Humanos , Masculino , Microscopia/normas , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/isolamento & purificação , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/microbiologia , Reação em Cadeia da Polimerase/normas , Sensibilidade e Especificidade , Pele/microbiologia , Adulto Jovem
6.
PLoS One ; 12(7): e0181994, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750103

RESUMO

BACKGROUND: Buruli ulcer (BU) is an infectious disease caused by Mycobacterium ulcerans and considered the third most prevalent mycobacterial disease in humans. Secondary bacterial infections in open BU lesions are the main cause of pain, delayed healing and systemic illness, resulting in prolonged hospital stay. Thus, understanding the diversity of bacteria, termed the microbiome, in these open lesions is important for proper treatment. However, adequately studying the human microbiome in a clinical setting can prove difficult when investigating a neglected tropical skin disease due to its rarity and the setting. METHODOLOGY/PRINCIPAL FINDINGS: Using 16S rRNA sequencing, we determined the microbial composition of 5 BU lesions, 3 non-BU lesions and 3 healthy skin samples. Although no significant differences in diversity were found between BU and non-BU lesions, the former were characterized by an increase of Bacteroidetes compared to the non-BU wounds and the BU lesions also contained significantly more obligate anaerobes. With this molecular-based study, we were also able to detect bacteria that were missed by culture-based methods in previous BU studies. CONCLUSIONS/SIGNIFICANCE: Our study suggests that BU may lead to changes in the skin bacterial community within the lesions. However, in order to determine if such changes hold true across all BU cases and are either a cause or consequence of a specific wound environment, further microbiome studies are necessary. Such skin microbiome analysis requires large sample sizes and lesions from the same body site in many patients, both of which can be difficult for a rare disease. Our study proposes a pipeline for such studies and highlights several drawbacks that must be considered if microbiome analysis is to be utilized for neglected tropical diseases.


Assuntos
Úlcera de Buruli/microbiologia , Microbiota , Pele/microbiologia , Pele/patologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Humanos , Microbiota/efeitos dos fármacos , Pessoa de Meia-Idade , Mycobacterium ulcerans/classificação , Oxigênio/farmacologia , Filogenia , Análise de Componente Principal , Coloração e Rotulagem , Adulto Jovem
7.
Front Microbiol ; 8: 789, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533767

RESUMO

Isolates of the Mycobacterium chelonae-M. abscessus complex are subdivided into four clusters (CHI to CHIV) in the INNO-LiPA® Mycobacterium spp DNA strip assay. A considerable phenotypic variability was observed among isolates of the CHII cluster. In this study, we examined the diversity of 26 CHII cluster isolates by phenotypic analysis, drug susceptibility testing, whole genome sequencing and single-gene analysis. Pairwise genome comparisons were performed using several approaches, including average nucleotide identity (ANI) and genome-to-genome distance (GGD) among others. Based on ANI and GGD the isolates were identified as M. chelonae (14 isolates), M. franklinii (2 isolates) and M. salmoniphium (1 isolate). The remaining 9 isolates were subdivided into three novel putative genomospecies. Phenotypic analyses including drug susceptibility testing, as well as whole genome comparison by TETRA and delta differences, were not helpful in separating the groups revealed by ANI and GGD. The analysis of standard four conserved genomic regions showed that rpoB alone and the concatenated sequences clearly distinguished the taxonomic groups delimited by whole genome analyses. In conclusion, the CHII INNO-LiPa is not a homogeneous cluster; on the contrary, it is composed of closely related different species belonging to the M. chelonae-M. abscessus complex and also several unidentified isolates. The detection of these isolates, putatively novel species, indicates a wider inner variability than the presently known in this complex.

8.
Genome Biol Evol ; 9(3): 414-426, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137745

RESUMO

Buruli ulcer (BU) is an insidious neglected tropical disease. Cases are reported around the world but the rural regions of West and Central Africa are most affected. How BU is transmitted and spreads has remained a mystery, even though the causative agent, Mycobacterium ulcerans, has been known for more than 70 years. Here, using the tools of population genomics, we reconstruct the evolutionary history of M. ulcerans by comparing 165 isolates spanning 48 years and representing 11 endemic countries across Africa. The genetic diversity of African M. ulcerans was found to be restricted due to the bacterium's slow substitution rate coupled with its relatively recent origin. We identified two specific M. ulcerans lineages within the African continent, and inferred that M. ulcerans lineage Mu_A1 existed in Africa for several hundreds of years, unlike lineage Mu_A2, which was introduced much more recently, approximately during the 19th century. Additionally, we observed that specific M. ulcerans epidemic Mu_A1 clones were introduced during the same time period in the three hydrological basins that were well covered in our panel. The estimated time span of the introduction events coincides with the Neo-imperialism period, during which time the European colonial powers divided the African continent among themselves. Using this temporal association, and in the absence of a known BU reservoir or-vector on the continent, we postulate that the so-called "Scramble for Africa" played a significant role in the spread of the disease across the continent.


Assuntos
Úlcera de Buruli/genética , Evolução Molecular , Variação Genética , Mycobacterium ulcerans/genética , África , Úlcera de Buruli/microbiologia , Úlcera de Buruli/transmissão , Genética Populacional , Genoma Bacteriano , Humanos , Mycobacterium ulcerans/patogenicidade , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
PLoS Negl Trop Dis ; 9(11): e0004158, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26618509

RESUMO

BACKGROUND: Increased availability of Next Generation Sequencing (NGS) techniques allows, for the first time, to distinguish relapses from reinfections in patients with multiple Buruli ulcer (BU) episodes. METHODOLOGY: We compared the number and location of single nucleotide polymorphisms (SNPs) identified by genomic screening between four pairs of Mycobacterium ulcerans isolates collected at the time of first diagnosis and at recurrence, derived from a collection of almost 5000 well characterized clinical samples from one BU treatment center in Benin. PRINCIPAL FINDINGS: The findings suggest that after surgical treatment-without antibiotics-the second episodes were due to relapse rather than reinfection. Since specific antibiotics were introduced for the treatment of BU, the one patient with a culture available from both disease episodes had M. ulcerans isolates with a genomic distance of 20 SNPs, suggesting the patient was most likely reinfected rather than having a relapse. CONCLUSIONS: To our knowledge, this study is the first to study recurrences in M. ulcerans using NGS, and to identify exogenous reinfection as causing a recurrence of BU. The occurrence of reinfection highlights the contribution of ongoing exposure to M. ulcerans to disease recurrence, and has implications for vaccine development.


Assuntos
Úlcera de Buruli/diagnóstico , Genoma Bacteriano , Genômica/métodos , Tipagem Molecular/métodos , Mycobacterium ulcerans/classificação , Mycobacterium ulcerans/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Benin/epidemiologia , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/microbiologia , Criança , Feminino , Humanos , Masculino , Epidemiologia Molecular/métodos , Mycobacterium ulcerans/isolamento & purificação , Recidiva , Estudos Retrospectivos
11.
Biomed Res Int ; 2015: 835767, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26180813

RESUMO

Buruli ulcer (BU) imposes a serious economic burden on affected households and on health systems that are involved in diagnosing the disease and treating patients. Research is needed to find cost-effective therapies for this costly disease. Plants have always been an important source of new pharmacologically active molecules. Consequently we decided to undertake the study of plants used in traditional treatment of BU in Benin and investigate their antimycobacterial activity as well as their chemical composition. Extracts from forty-four (44) plant species were selected on account of reported traditional uses for the treatment of BU in Benin and were assayed for antimycobacterial activities. Crude hydroethanolic extract from aerial parts of Holarrhena floribunda (G. Don) T. Durand and Schinz was found to have significant antimycobacterial activity against M. ulcerans (MIC = 125 µg/mL). We describe here the identification of four steroidal alkaloids from Mycobacterium ulcerans growth-inhibiting fractions of the alkaloidal extract of the aerial parts of Holarrhena floribunda. Holadysamine was purified in sufficient amount to allow the determination of its MCI (=50 µg/mL). These results give some support to the use of this plant in traditional medicine.


Assuntos
Alcaloides , Antibacterianos , Úlcera de Buruli/tratamento farmacológico , Holarrhena/química , Mycobacterium ulcerans/crescimento & desenvolvimento , Plantas Medicinais/química , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Humanos , Medicina Tradicional Africana
14.
PLoS Negl Trop Dis ; 9(3): e0003681, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25826332

RESUMO

Efforts to control the spread of Buruli ulcer--an emerging ulcerative skin infection caused by Mycobacterium ulcerans--have been hampered by our poor understanding of reservoirs and transmission. To help address this issue, we compared whole genomes from 18 clinical M. ulcerans isolates from a 30 km2 region within the Asante Akim North District, Ashanti region, Ghana, with 15 other M. ulcerans isolates from elsewhere in Ghana and the surrounding countries of Ivory Coast, Togo, Benin and Nigeria. Contrary to our expectations of finding minor DNA sequence variations among isolates representing a single M. ulcerans circulating genotype, we found instead two distinct genotypes. One genotype was closely related to isolates from neighbouring regions of Amansie West and Densu, consistent with the predicted local endemic clone, but the second genotype (separated by 138 single nucleotide polymorphisms [SNPs] from other Ghanaian strains) most closely matched M. ulcerans from Nigeria, suggesting another introduction of M. ulcerans to Ghana, perhaps from that country. Both the exotic genotype and the local Ghanaian genotype displayed highly restricted intra-strain genetic variation, with less than 50 SNP differences across a 5.2 Mbp core genome within each genotype. Interestingly, there was no discernible spatial clustering of genotypes at the local village scale. Interviews revealed no obvious epidemiological links among BU patients who had been infected with identical M. ulcerans genotypes but lived in geographically separate villages. We conclude that M. ulcerans is spread widely across the region, with multiple genotypes present in any one area. These data give us new perspectives on the behaviour of possible reservoirs and subsequent transmission mechanisms of M. ulcerans. These observations also show for the first time that M. ulcerans can be mobilized, introduced to a new area and then spread within a population. Potential reservoirs of M. ulcerans thus might include humans, or perhaps M. ulcerans-infected animals such as livestock that move regularly between countries.


Assuntos
Úlcera de Buruli/epidemiologia , Variação Genética , Genoma Bacteriano/genética , Mycobacterium ulcerans/genética , Genótipo , Gana/epidemiologia , Humanos , Polimorfismo de Nucleotídeo Único/genética
15.
Emerg Infect Dis ; 21(3): 497-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25695367

RESUMO

We report Buruli ulcer in a man in the Netherlands. Phenotyping of samples indicate the Buruli pathogen was acquired in Suriname and activated by trauma on return to the Netherlands. Awareness of this disease by clinicians in non-Buruli ulcer-endemic areas is critical for identification.


Assuntos
Úlcera de Buruli/diagnóstico , Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/isolamento & purificação , Viagem , Idoso , Úlcera de Buruli/tratamento farmacológico , Humanos , Masculino , Países Baixos , Suriname
16.
PLoS Negl Trop Dis ; 8(9): e3148, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188535

RESUMO

BACKGROUND: The reservoir and mode of transmission of Mycobacterium ulcerans, the causative agent of Buruli ulcer, still remain a mystery. It has been suggested that M. ulcerans persists with difficulty as a free-living organism due to its natural fragility and inability to withstand exposure to direct sunlight, and thus probably persists within a protective host environment. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of free-living amoebae as a reservoir of M. ulcerans by screening the bacterium in free-living amoebae (FLA) cultures isolated from environmental specimens using real-time PCR. We also followed the survival of M. ulcerans expressing green fluorescence protein (GFP) in Acanthameoba castellanii by flow cytometry and observed the infected cells using confocal and transmission electron microscopy for four weeks in vitro. IS2404 was detected by quantitative PCR in 4.64% of FLA cultures isolated from water, biofilms, detritus and aerosols. While we could not isolate M. ulcerans, 23 other species of mycobacteria were cultivated from inside FLA and/or other phagocytic microorganisms. Laboratory experiments with GFP-expressing M. ulcerans in A. castellani trophozoites for 28 days indicated the bacteria did not replicate inside amoebae, but they could remain viable at low levels in cysts. Transmission electron microscopy of infected A. castellani confirmed the presence of bacteria within both trophozoite vacuoles and cysts. There was no correlation of BU notification rate with detection of the IS2404 in FLA (r = 0.07, n = 539, p = 0.127). CONCLUSION/SIGNIFICANCE: This study shows that FLA in the environment are positive for the M. ulcerans insertion sequence IS2404. However, the detection frequency and signal strength of IS2404 positive amoabae was low and no link with the occurrence of BU was observed. We conclude that FLA may host M. ulcerans at low levels in the environment without being directly involved in the transmission to humans.


Assuntos
Amoeba/microbiologia , Úlcera de Buruli/microbiologia , Reservatórios de Doenças/microbiologia , Mycobacterium ulcerans/fisiologia , Humanos , Mycobacterium ulcerans/genética
17.
PLoS One ; 9(2): e89407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586755

RESUMO

BACKGROUND: Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a necrotizing disease of the skin, soft tissue and bone. PCR is increasingly used in the diagnosis of BU and in research on the mode of transmission and environmental reservoir of M. ulcerans. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to evaluate the performance of laboratories in detecting M. ulcerans using molecular tests in clinical and environmental samples by implementing sequential multicenter external quality assessment (EQA) programs. The second round of the clinical EQA program revealed somewhat improved performance. CONCLUSIONS/SIGNIFICANCE: Ongoing EQA programs remain essential and continued participation in future EQA programs by laboratories involved in the molecular testing of clinical and environmental samples for M. ulcerans for diagnostic and research purposes is strongly encouraged. Broad participation in such EQA programs also benefits the harmonization of quality in the BU research community and enhances the credibility of advances made in solving the transmission enigma of M. ulcerans.


Assuntos
Úlcera de Buruli/diagnóstico , Técnicas de Diagnóstico Molecular/normas , Mycobacterium ulcerans/isolamento & purificação , Reação em Cadeia da Polimerase/normas , Garantia da Qualidade dos Cuidados de Saúde , Meio Ambiente , Humanos
18.
Appl Environ Microbiol ; 80(3): 1197-209, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296504

RESUMO

Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the "pan-African clade" were found to be widespread throughout Africa, while the ISE-SNP types of the "Gabonese/Cameroonian clade" were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.


Assuntos
Úlcera de Buruli/microbiologia , Elementos de DNA Transponíveis , Mycobacterium ulcerans/classificação , Mycobacterium ulcerans/genética , Polimorfismo de Nucleotídeo Único , África , Úlcera de Buruli/epidemiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Doenças Endêmicas , Fluxo Gênico , Genótipo , Humanos , Mycobacterium ulcerans/isolamento & purificação , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...